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ABSTRACT

Electronic sources based upon resonant tunneling diodes (RTDs) usually generate power
by establishing limit;cycles which exchange energy with storage elements in an external
biasing circuit. Hence, the output power in this type of implementation will always be
limited by extrinsic effects. This study verifies the presence of multiple energy-storage
mechanisms solely within the RTD and characterizes the interdependencies necessary to
induce intrinsic oscillations observed in quantum mechanical simulations. Specifically, this
work shows that a nonlinear “access” resistance and quantum-well inductance is
responsible for the hysteresis, “plateau-like” behavior, and bistability associated with the
intrinsic  current-voltage (I-V) characteristic. Furthermore, a new circuit-level
representation which accurately incorporates the nonlinear dependencies into these
heretofore “linear” equivalent-circuit elements is used to demonstrate the different roles, as
well as the degree of cooperative interplay, of the intrinsic oscillations and hysteresis in

determining the overall I-V characteristics of the RTD.



I. INTRODUCTION

The intrinsically fast process of resonant tunneling through double barrier heterostructures along
with the existence of negative differential resistance (NDR) makes these devices attractive as
sources for very high frequency electromagnetic energy. While resonant tunneling diodes (RTDs)
have been shown to possess rates of response in the terahertz regime [1] and have been
implemented as oscillators up to 712 GHz [2], only microwatt levels of power have been achieved
above 100 GHz [3]. Thus, a detailed understanding of the fundamental power limitations in RTD-
based sources is needed. Previous analysis aimed at optimizing RTD sources may have been
limited. more by the design approach than by intrinsic factors. This is true because RTDs are
traditionally implemented purely as a NDR element with only a single energy storage mechanism
(i.e., device capacitance). Hence, the generation of oscillations must be achieved through limit-
cycles which exchange energy with storage elements in the external biasing circuit. In this
traditional approach, where oscillations are induced extrinsically, the amount of achievable output
power will always be limited by external losses (e.g., contact resistance) and low frequency design
constraints (i.e., suppression of bias oscillations). Previously, quantum mechanical simulations of
a GaAs-AlGaAs RTD structure have shown the potential for self-oscillations up to 6 THz [4]. If
the dynamics surrounding these intrinsic phenomena can be fully understood and controlled, RTD
sources based on the self-oscillation process should yield milliwatt levels of power in the terahertz

regime [5].

The purpose of this paper is to clearly delineate between the physics responsible for the hysteresis
and that of the high-frequency oscillations for intrinsic (i.e., those free of external parasitic
coupling) RTD structures. To date, analysis of general oscillation phenomenon in RTD-based
sources has either ignored the possibility of multiple energy-storage circuit-elements in the
intrinsic device [6,7] or applied linear circuit theory to simplified small-signal diode models with
constant coefficients [4,8]. This work incorporates the important intrinsic nonlinearity into the
equivalent-circuit parameters for the RTD and is analyzed by numerically generating the nonlinear
circuit solutions of the time-dependent behavior. As will be shown, when nonlinear dependencies
are properly included it is possible to reproduce the hysteresis, oscillation phenomena, and the

overall I-V curves obtained from previous quantum mechanical simulations of the intrinsic RTD




structure [9]. Fundamental physical insight into device nonlinearities is required because it will
strongly influence the design and optimization of RTD-based high-frequency power sources

embedded within biasing circuitry.

II. BACKGROUND THEORY

In general it is difficult to utilize experimentation to directly extract the intrinsic characteristics of
RTD structures. For example, while experimental investigations of RTDs routinely report I-V
curves which exhibit a characteristic “plateau-like” hysteresis behavior and bistability, there has
been previous debate on whether these phenomena are always a result of oscillations induced by
the extrinsic circuit or whether the intrinsic nature of the RTD is sometimes responsible [10,11].
Of the two main groups offering an explanation for this I-V behavior, one attributed the entire
phenomenon to intrinsic charge bistability [10] and the other interpreted the results as arising from

extrinsic biasing effects [11].

In the intrinsic description of the first group [10], charge build-up in the quantum-well during
forward biasing acted to maintain the position of the resonant tunneling (RT) states (i.e., relative
to the injecting emitter states). This process leads to higher current values (i.e., in comparison in
reverse biasing) until the RT states align with low-lying quantized states in the accumulated region
of the emitter. At this point, a gradually falling current (i.e., negative-slope plateau) is obtained
until the RT states drop below the emitter conduction-band edge. While this static analysis
accounted for many features exhibited in the time-average I-V characteristic, it fails to address
oscillation behavior or to explain the positive-slope plateau regions exhibited by some RTD

structures.

Conversely, the second group [11] attributed the entire I-V behavior to extrinsically-induced high-
frequency oscillations. Here, a resonance between the RTD capacitance and the lead-wiring
inductance is given credit for introducing plateau features upon a loadline (i.e., source-resistance
and NDR ) induced hysteresis. Theoretical analysis by others [6,7], was subsequently used to show
that extrinsic circuit effects could produce many of the features seen in typical I-V curves;
however, most of these studies failed to show hysteresis. Moreover, no attempt was made to

precisely correlate these equivalent-circuit studies to a specific RTD (i.e., independently extract



device parameters) embedded in a specific biasing circuit. Hence, a completely unique physical

explanation for this phenomenon was not achieved.

Some resolution to this controversial issue came later from the many-body Wigner-distribution-
function (MBWDF) numerical simulations of Jensen and Buot [9]. Here, time-dependent quantum
transport simulations of a particular GaAs-AlGaAs RTD revealed intrinsic high-frequency
oscillations for applied bias corresponding to the NDR region of operation. Indeed, the presence of
intrinsic autonomous oscillations was found which could not be explained using the arguments of
the two groups discussed above. These MBWDF simulations possessed two unique aspects lacking
from the investigations of the other groups. First, the numerical procedure incorporated time-
dependent self-consistent effects for all dc biases. Second, the simulations utilized a longer
simulation “box” length which allowed for an accurate description of the charge dynamics in the
buffer regions surrounding the actual resonant tunneling structure (RTS). Note, here we denote the
RTS as the barrier-well-barrier regions; whereas, the intrinsic RTD includes both the RTS and the
surrounding resistive “access” regions. This accurate description of the charge dynamics within the
buffer regions had two important benefits; namely, (i) it allowed for the application of the “inflow/
outflow” boundary conditions, and (ii) it provided for a realistic description of the “access”
resistance within the buffer regions (which will be shown later to play a crucial role in the overall

behavior of the intrinsic RTD).

At this point, it is important to note that the intrinsic oscillations observed in Ref. [9] were not an
artificial result of the boundary conditions utilized in the simulations. While the size of the
simulation “box” used in their study was small (i.e., 550 A), the “inflow” and “outflow” states were
found to be practically decoupled without the ability to produce noticeable artificial reflections at
the boundaries. Furthermore, for all cases considered the boundary electric fields were sufficiently
small enough (or negligible) that the use of drifted Fermi distribution for the “inflow” state did not
noticeably affect the amplitude or frequency of the oscillations [12,13]. Hence, the average I-V
characteristic of these one-dimensional (i.e., transverse dimension assumed infinite) simulations,
as shown in Fig. 1, support the notion that RTDs of sufficiently large area possess the inherit ability

to manifest bistable behavior.
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FIG. 1. RTD current density vs applicd bias from quantum simulations of Ref. 3. Also depicted is the
linear voltage-drop model results which assume the entire applicd bias drops linearly across the double-
barrier structure.




Clearly, the autonomous oscillations of these RTD simulation results imply the presence of at least
two charge storage mechanisms. Following these observations, Buot and Jensen [4] subsequently
proposed an equivalent circuit model for the RTD, as depicted in Fig 2a, which incorporated a

constant quantum-inductance L directly in series with the nonlinear circuit element, I(V). Here, the

resulting L |Gl product modeled the inherit delay, T, , in tunneling across the double-barrier

structure through the discrete energy level in the quantum well [14]. Note, this type of time delay,
where self-consistent potential effects are ignored, has been recently referred to as the “kinetic”
time delay by Landauer [15]. Therefore, in order to produce the characteristics observed in the
MBWDF simulations, the RTD equivalent circuit must minimally consist of an inductor-delayed
current leg ( i.e., quantum-well inductance L in series with a nonlinear tunneling element I(V) of
the RTS) in parallel with the double-barrier capacitance. In addition, a series “access” resistance

must be included to model the charging delay of the source and drain resistance.

It should also be noted that the “quantum-inductor” model (QIM) of Fig. 2a supports numerical
results of Frensley [16] and Kluksdahl, et al. [17]. Specifically, their WDF simulations [16,17] had
revealed a curious result in the high-frequency response of RTDs subject to small-signal excitation.
In particular, an impedance characteristic was obtained with a negative real-part at Jow frequencies,
but with a crossover to positive values at higher frequencies. On the other hand, the traditional
“lead-inductor” model (LIM) for an embedded RTD, as given in Fig. 2b, cannot explain this
frequency-dependent crossover behavior in the impedance. Note, the LIM circuit-equivalent,
which models the intrinsic RTD with a single energy-storage element and attributes any additional
frequency-dependence to an extrinsic lead-inductance, is also the one used by the second group
(i.e., discussed above) which sought to explain plateau-like I-V behavior by extrinsic effects. Also
note that these numerical findings about impedance agree with the QIM circuit with a positive value
of inductance; this should be contrasted with another proposed equivalent-circuit model which
utilizes a quantum inductance which is negative (i.e., L=1/ G ; where T is the tunneling time

and G is the linearized RTD conductance) inside the NDR region [18].

The introduction of a quantum-well inductance, which serves to “choke” the I(V) leg of the QIM

circuit in Fig 2a, was able to clarify the important role of electron inertia on the RTDs high-

frequency response in the frequency range 10" to 10" Hz. Specifically, when the I(V) leg
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FIG. 2. Basic circuit modcl configurations used in nonlincar oscillation study.



becomes inductively blocked at very high frequencies, the QIM becomes a simple RC circuit

which has a purely positive real-part impedance in direct agreement with [16] and [17]. In addition,

the QIM’s impedance has the ability to become completely inductive in the range 10" t0 10'* Hz

and then to change-back capacitive as the frequency approaches 10" Hz. This dependency of the
RTD’s imaginary-part impedance also agrees with physiés—based simulation results. The QIM

circuit is also applicable at frequencies well below the point where inertial effects become

C g . 15 . iy )
significant (i.e., f« 10~ Hz). At these lower frequencies, the oscillation mechanism can be

explained by two characteristic delay times [14]. Namely, T, which is the time necessary to

accumulate emitter charge in response to a voltage change and, T, , which is the self-consistent

averaged time required to “leak” this emitter charge into (and subsequently out of) the well by

tunneling. Hence, the condition for formation of oscillations becomes T B> TL- This condition

applies because if T <7 the emitter charge buildup can rapidly follow in phase with the

tunneling process preventing any significant spatial-charge fluctuations between the emitter region

and quantum well. However, if 75> 1 , the accumulated charge in the emitter lags the charge

leakage process, leading to a redistribution of charge between emitter and well regions. This time-
dependent redistribution of charge is accompanied by a fluctuation of the pertinent energy levels
in emitter relative to the discrete RT levels of the well leading to a periodic change in the RTD
current. This description of the oscillation process is supported by the numerical simulations in [9]
which clearly show an out-of-phase delayed spatial-fluctuation of electron density between the
emitter and well regions. Moreover, this fluctuation occurs mainly between a narrow accumulation

region in the emitter (i.e., near the first barrier) and the quantum well.

The QIM given in Fig. 2a can immediately be used to deduce relations for the emitter-charging
time and the quantum-tunneling delay time. The QIM circuit yields T, = RC and 1, = LIGI
where G is the linearized conductance in the NDR region. This circuit configuration can also be
used to derive condition-for-oscillation criterion in good agreement with the quantum-based

simulation results. Such a “linear” analysis, using the constant-parameter version (i.e., constant R,

L and C) of the model in Fig. 2a, has been performed by Buot and Jensen [4]. Applying standard




circuit relations, and transforming the results about the resulting average values of voltage/current
for an assumed dc voltage source V g, yields a dynamical relation for the transient voltage v of
2
dv dv

RCLG;§-+(RC+ LG)a—t+ RI} + (RG+1)v+ V, = Vg (D

Equation (1) is a linear second-order differential equation which describes the time-dependent

component of the total voltage V = v+ V , across the nonlinear current-element I(V) in Fig.
2a. Here, V . is the dc part of the voltage across I(V) and I, is the dc part of the current through

I(V). Noting the condition that RI, + V éc = Vg, Eq. (1) can be expressed as the “viscous”

harmonic oscillator equation

2
dv dv

2
—+0v=0 2)
dt dt

where

_LG+RC_ 1 1 -
"= TRCG T, T

2 1+ RG
W =

RCLG )

and the constant parameter G is the conductance defined in a small neighborhood around the V ;.
operating point. Specifically, G=G(V=V ;) = (d1/d V)| vy, ©F the slope of I(V) at

V =V .- Note therefore, this “linearized” analysis only applies for small displacements about the

dc operating point and is useful only for establishing stability criterion relating to the spiraling
orbits in phase-space. Depending on the values of the physical parameters, these orbits may spiral
outward (i.e., grow) or inward (i.e., decay). Under these linearized conditions, the solution of Eq.

(2) is given by

v = Aexp (M) + Bexp (A1) (5)



where

A —_gi ”Tm (6)

Applying strict conditions for the formation of “limit cycle” oscillations (i.e., negative 1 and

0)2 > () when biased in the NDR region yields [4]

Tp>T,, and RIGI>1.

B

(M

Hence, a simple linear analysis of the quantum-inductor circuit configuration yields minimal
oscillation criterion in direct agreement with the physics-based charge exchange arguments
presented earlier. Furthermore, any attempt to explain the MBWDEF simulations results using
extrinsically-based arguments (i.e., lead-inductance analogy) will fail [19]. This is true because, as

shown in Ref. [4], oscillations induced by external lead-inductances will always arrive at exactly

the opposite conclusions (i.e., T5<7; ,RIGI <1 ). Therefore, this simple analysis has deduced

some definite conclusions about the correct circuit-equivalent configuration for modeling intrinsic

oscillations in RTDs.

Insight into the hysteresis behavior can also be deduced from the self-consistent charge buildup
arguments. Indeed, hysteresis in intrinsic RTDs can result as a consequence of charge buildup and
ejection from the quantum well. For example, a simple charge transport analysis, using an energy-
balance equation and the relaxation-time approximation, can readily show hysteresis behavior
[20,21], but without the characteristic plateau-like features. In fact, this type of intrinsic bistability
has been demonstrated experimentally [22,23]. In a direct analogy, a circuit loadline analysis of a
constant access resistance R in series with nonlinear conductance element I(V) will demonstrate
hysteresis behavior if RIGI> 1. Here, the RIGI>1 condition is necessary to insure multiple
loadline intercepts (i.e., since -1/R defines the slope of the loadline and -IGl is the slope of the I(V)
function in the NDR region). However, as will be shown in the next section, a constant-R loadline

cannot produce the plateau-like region exhibited by quantum simulation results of Fig. 1.

10




This section has served as a review of previous investigations into the hysteresis and bistable
behavior of RTDs. As shown, there is both theoretical and experimental evidence for the existence
of intrinsic self-oscillations and bistability in RTDs. While there is a tendency to attribute such
phenomenon to extrinsic effects, linear RLC circuit analysis reviewed here confirms the need of
including a quantum-inductance effect into the RTD circuit-equivalent model (i.e., as shown in
Fig. 2a). Specifically, linear arguments set the inclusion of this quantum-inductance as a necessary
condition for producing the intrinsic oscillations and for matching the high-frequency impedance
characteristics. Thus, the constant-parameter version (i.e., constant R, L and C) of the circuit
configuration given in Fig. 2a has been validated for small-signal excitation when the RTD is

biased in the NDR mode.

While these linear-analysis based conclusions provide valuable insight, it is important to note that
they cannot fully describe the entire process under investigation. It should be pointed out that the
attainment of a limit-cycle phenomenon always arises from the accurate balancing of energy gain
(e.g., NDR) and loss (e.g., series resistance) mechanisms which are always nonlinear. For a limit-
cycle to establish itself, an equilibrium must be attained where gains and losses are balanced over
a complete period. This implies the existence of some parametric dependence (e.g., voltage-
dependent conductances) to limit the cycle growth. For example, the previous linear analysis
resulting in Eqs. (1) thru (7) will predict oscillations which grow without bound because the NDR
conductance is treated as a constant regardless of the value of V. While this type of analysis can
give “spiral” start-up criterion, approximate oscillation frequency, and predict the possibility of a
limit-cycle by virtue of the nonlinear G, a complete analysis must incorporate all the important

nonlinear effects.

Therefore, an analysis which includes all pertinent nonlinear dependencies is required to accurately
characterize and understand the intrinsic behavior of RTDs. This is true, not only for discerning
features of the self—oscillations, but also for resolving the nature of the overall I-V characteristic.
A typical RTD I-V characteristic will possess a hysteresis, plateau behavior, and sharp “jumps” as
shown in Fig. 1. As mentioned previously, much of these features are often attributed to extrinsic
circuit effects. For example, hysteresis can be produced by a lead-resistance loadline and extrinsic
oscillations can introduce shifts in the overall I-V curve. On the other hand, intrinsic charge-storage

mechanisms can produce similar results and plateau behavior. However, a unique set of nonlinear

11



circuit-equivalent mechanisms have not yet been identified which can produce all these features in
an intrinsic RTD. Hence, the remaining question is concerned with the degree in which the
proposed QIM circuit, of Fig. 2a, can reproduce the MBWDF transport results of Fig. 1.
Specifically, can this circuit produce a hysteresis and oscillations which combine to yield the
overall plateau features. Note, the MBWDF results include discrete “jumps” and a plateau region
which increase as a function of forward bias. These are features which could not be resolved using

static charge-storage arguments (e.g., see [10] or [20]).

In the presentation which follows, the physics of the hysteresis from the equivalent circuit point of
view is further considered. Here, fully nonlinear simulations will reveal the intrinsic hysteresis to
be primarily a dc phenomena that does not necessarily involve the quantum-well inductance or the
RTD capacitance. The study will show the correct hysteresis behavior arises when a nonlinear
resistance R(V) is placed in series with a nonlinear I(V) circuit element. In addition, the
introduction of the nonlocal (i.e., depends on the voltage across NDR element) access resistance
element is shown to derive oscillatory behavior in direct agreement with self-oscillations obtained
from quantum mechanical simulations. Furthermore, nonlinearity effects present in the inductive-
delay element are shown to induce a positive-slope plateau region. Hence, the overall hysteresis
and bistability phenomenon can be closely tied to nonlinear physical mechanisms present in the

intrinsic RTD structure.

III. NONLINEAR EQUIVALENT CIRCUIT MODEL STUDY

To begin, consider the general mathematical relations describing the current/voltage dynamics of

the QIM circuit. If the circuit configuration given in Fig. 2a is biased by a dc voltage source V ¢,

application of standard circuit relations yields the autonomous second-order nonlinear equation

2
d d dv)®, 2
d_t;m(v, V) g+l Vdc)(d—:) +o (v, Vy)v =0 ®)
N, V) = (LG V) + RC)/ (RCLG (v, V 1))
where  L(v, V) = (G (v, Vo)) /(G V)

@ (v, V) = (1+ Rg(v, V) /(RCLG (v, V )

12




for the transient voltage v across the nonlinear conductance element I(V). Equation (8) has been

derived in a current-voltage frame of reference where the total voltage across I(V) is

V() =v(r) + V4 and V , is the oscillation-free voltage component. Note, Eq. (8) allows

for the possibility of an access resistance R(V) which has a nonlocal dependence on NDR potential.
The incorporation of nonlinearity into the circuit model leads to transient (and dc) voltage

dependent coefficients

g(v, Vg = (I(v+ V) - I(V, )) /v &)

which can be defined as the nonlinear conductance, since in the defined frame of reference the

transient current density is i = I(v+ V ) - I(V,) = g(v, V,)v,and

G(v, Vy) = G(V)=dL/dV (10)

which is just the slope of I(V) at V = v+ V,  or the normal definition of the linearized

conductance. This transformation allows solution of the nonlinear dc biasing separately from the

time-dependent oscillation problem. Specifically, the dc bias solution for V ,_ is obtained from

the voltage-drop relation
(V-Vy)

IV) + RO ) =

(11)

where once again we have allowed for the possibility of a nonlinear access resistance. In order to
properly interrogate the nonlinear version of the quantum-inductance model, values (or functions)
for the elemental parameters; R(V), L, C and I(V) must be defined. A numerical algorithm must
then be implemented to solve both the dc biasing equation in (11) and the dynamical equation in
(8) for the unstable (or decaying) transient states. In the two subsections that follow, both of these
problems will be addressed by first considering the oscillation-free characteristics and then

progressing on to the oscillation modes corresponding to the RTD structure studied in Ref. [4].

A. Oscillation-Free Characteristics

This section will consider the stable (oscillation-free) current solutions which result from the

quantum-inductor RTD circuit configuration of Fig. 2a. For this dc analysis (and for the oscillation



study of the next section) an RTD structure will be considered which was previously studied using

a Wigner-distribution-based physical model. Specifically, a GaAs-Aly3Gag;As double barrier

structure with 30 A barriers and a 50 A well. The entire device, including 2.0 X 10" em™ doped
equal-length source and drain buffer-regions, is 550 A in length. A temperature of 77K is assumed
throughout. The potential barrier heights used are 0.3 eV and an electron effective mass of

0.0667m, is assumed throughout the device structure. To derive the dc characteristic, Eq. (11) must

be solved which contains the nonlinear conductance I(V) and access resistance R(V).

To begin, the traditional approach of assuming a constant-R will be investigated. The results given
in Fig. 1 can be used to derive both the constant-R value and the I(V) conductance function. As
shown, Fig. 1 gives the overall self-consistent current-density results for the structure under
consideration. Since this self-consistent result includes the influence of the buffer regions, it
inherently contains information for determining the access resistance. Figure 1 also contains the
linear voltage-drop results which were obtained by applying the entire potential-drop linearly
across the barrier-well-barrier structure. Note, the linear voltage-drop results correspond to a zero
value of R; hence, this result provides a description for the intrinsic device conductance I(V). Since
a constant access resistance would lead to a uniform shift in the overall I-V curve, the constant R
value can be estimated from the resulting shift of the peak-current-point in Fig. 1 when self-

consistency is included (i.e., by comparing the linear voltage-drop result to self-consistent result

[4]). Employing this approach yields R =1.63 X 107Q cm’.

At this point, a set of constant-R loadline intercepts for the quantum-inductor circuit can be

obtained by solving the nonlinear voltage-drop relation in Eq. (11). In this case Eq. (11) defines the

intersections of the nonlinear conductance I(V) and the linear relation ( V-V )/ R = 0 which

uniquely defines the stable current solutions. Figure 3 illustrates a discrete set of these intersection
curves for three values of applied bias. From continuity considerations, the overall oscillation-free
I-V curves may be plotted as shown in Fig. 4. Figure 4 contains solutions for the forward and
backward bias sweeps as well as for the tri-stable (i.e., middle current solution) states. Note, the
hysteresis results of Fig. 4 closely resemble those obtained from a simplified analysis of charge-

storage effects in RTDs given by Sheard and Toombs [20].
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The constant-R results of Fig. 4 lack the plateau-like structure distinctly present in the quantum
simulation results of Fig. 1. It is well known that multiple energy-storage circuits possess the
potential to produce autonomous oscillations and that the presence of such oscillations can lead to
displacements in the overall I-V curve [24]. Thus, one might incorrectly attribute the entire absence
of step-like behavior (i.e., in Fig. 4) to the exclusion of transient effects by this dc analysis. Clearly,
if oscillations with limit-cycles (i.e., non-decaying modes with identically repeating cycles) were
to result when biased in the NDR region, one could correctly anticipate some change to the time-
averaged I-V characteristic. This is true because the conductance relation I(V) is nonlinear;

therefore, the forward and backward swings in current will be different.

To explore this issue in detail, a comprehensive study has been performed to derive the nonlinear
oscillations of both the quantum-inductor and lead-inductor models given in Fig. 2. This
comprehensive study utilized numerically generated results to extensively evaluate the two circuit
configurations for various nonlinear effects [25]. In the next section, details useful in explaining
the intrinsic oscillation process in RTDs will be presented. However, at this point it is important to
note that the constant parameter models (i.e., constant R, L and C) were unable to match the
physics-based results of Ref. [4]. In particular, while I-V curves with qualitative features similar in
some respects to those observed both theoretically and experimentally (e.g., see Ref. [3]) were

obtained, there were some major differences. For example, Fig. 5 shows the overall I-V results
obtained for the constant-R quantum-inductor model (note, values of L = 1.48 x 10 21 H cm2

and C = 2.3x 10_7 F/ cm2 were estimated from oscillation-mode data). As shown, differences
included an excessively large value of current in the plateau region and a very narrow hysteresis
region. A variational study of the circuit parameters (i.e., L, R and C) was also performed which
revealed no marked improvement could be obtained using the constant parameter model. Thus, it
is obvious that a constant R, L and C model cannot be used to represent all the nonlinear dynamics

over the entire NDR region [15].

Up to this point, the analysis has assumed that the bulk access regions are ohmic with a constant
resistance representation. Of course, this assumption is true only in the cases where the current is
a linear function of the access-region voltage-drop. This is generally true if the applied voltage

creates a constant electric field throughout the region where the voltage drop is applied and there
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is no accumulated/depleted spatial charge, as in metals. However, in the source region of an RTD
where part of the access resistance is defined (similar arguments hold for the depletion charge in
the drain region although this region is not as critical to the argument), stored electron charge
resides principally in a narrow accumulation region adjacent to the first barrier. This stored charge
renders the access resistance to be highly nonlinear and is therefore expected to exhibit a maximum
as a function of bias. This is indeed shown by the Wigner-distribution-function simulations of the

RTD at 300K [13] and at 77K [19].

The I-V curves obtained from the numerical solution of the quantum transport equation (i.e., Fig.
12¢ of Ref. [7] and Fig. 2 of Ref. [3]) were used to deduce the nonlinearity of the access resistance
R(V) as a function of applied bias. Figure 6 shows a simple piece-wise approximation to R(V)
obtained from a point-by-point estimation of the shift between the two current-density functions
given in Fig. 1. Since the dc R(V) is sought (i.e., need access resistance which exists in the absence
of the intrinsic oscillations), the function displayed in Fig. 6 was derived using the backward leg

of the self-consistent I-V curve which is essentially free of oscillations.

The explanation for why R(V) was obtained from the backward leg of the hysteresis data is really
quite simple. Here, equivalent-circuit element values are being derived from the quantum
simulations in much the same way an experimentalist might extract these values from a real device.
Since the real device is really a black box, a circuit equivalent is assumed and then a match to the
parameters is extracted from the measurement data. However, when self-oscillations exist they can
shift the overall time-averaged I-V results. Hence, if the goal is to completely match to this time-
dependent data one needs to solve for the oscillation behavior. In fact, such time-dependent studies
will be presented later in the self-oscillation subsection. However, at this point some method is
needed to identify the dc voltage dependence of the access resistance. Now, since the backward-
leg hysteresis data of the quantum simulations is mostly stable (i.e., with only a very narrow
unstable bias-region), it can be used to obtain the dc R(V) characteristic. Hence, this purely dc
R(V) function is free of any time-dependent influences (i.e., shifts due to self-oscillations) and can

be used as a model parameter for both forward and backward sweep calculations.

Also note the access resistance model is defined as a nonlocal function of voltage across the

nonlinear conductance element I(V). This parameterization is truly a nonlocal feedback effect
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since a unique mapping to the bulk-region potential does not exist under transient conditions (i.e.,

when the R(V) and I(V) elements of Fig. 2a are electrically separated by the inductor element L).

The R(V) result in Fig. 6 exhibits a step-like characteristic at a bias corresponding to the onset of
NDR region. When this nonlinear resistance model is incorporated into the quantum-inductor
circuit configuration, the results for the dc circuit (i.e., R(V) in series with I(V)) are drastically
altered. Figure 7 gives a new set of loadline intercepts and shows how the nonlinear R(V)
introduces sag into the characteristic as compared to the linear R loadline shown previously in Fig.
3. The resulting dc component of the I-V characteristic, given by the dashed-line results in Fig. 8,
already contains the desired step-like behavior observed in the physical-model results of Fig. 1. As
can be seen by comparing Figs. 3 and 4 to Figs. 7 and 8, the sag in the nonlinear loadline extends
the voltage-range over which the hysteresis persists. This improves the agreement between the
equivalent circuit results and the physics-based simulations. Also note, this dc hysteresis agrees

with previous experimental observations of intrinsic RTD behavior [10].

This dc hysteresis effect is a very interesting result since it shows that, aside from limit-cycle
oscillations in the NDR region, a nonlinear access resistance contributes to the plateau-like
behavior of the overall I-V characteristic. In fact, as the next section will show, R(V) is the major
cause of the hysteresis behavior and an important factor in determining the self-oscillation

phenomenon in this RTD structure.

It is important to note that this dc bistability effect obtained for this particular intrinsic device
structure will not apply globally to all RTDs. This is true because the overall character of this
intrinsic hysteresis phenomenon arises from charge accumulation both in the well and emitter
region. It is well known that the total accumulation of charge will depend on device area and on
the degree of asymmetry of the double barrier structure [22]. Furthermore, subtle changes to buffer
layer doping near the barrier interfaces may strongly influence the results. In fact, previous
experimental verification of intrinsic dc bistability in RTDs has required the use of highly
reflective collector barriers to enhance electrostatic feedback [22,23]. It is true that many
experimental observations of bistability are due to extrinsic circuit oscillations and/or the coupling
of a large external series resistance in series with the NDR of the diode. However, it is also true

that either of these effects could prevent the observation of a truly intrinsic bistability [23].
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Therefore, since this intrinsic dc bistabilty is dependent on device area and symmetry, its existence
is not necessarily contradicted by experimental results which show that some RTD structures can
often be biased in a stable fashion (i.e., so they do not exhibit a hysteresis) either by reducing the
device area or by reversing the sign of the applied bias. This work is concerned with developing an
equivalent circuit model essentially for an intrinsic RTD (i.e., bulk access regions are less than 250
A) and that the nonlinear resistance arises from a very short charge-accumulated region adjacent
to the barrier structure. In realistic device structures, additional contact resistance will also be
incorporated in the R(V) characteristic and this constant component will strongly influence the
voltage shift and extent of the hysteresis. Since it is well known that reducing the area of a whisker-
contacted device will reduce the skin-effect component of the contact resistance [26], a particularly
large-area RTD structure which might exhibit intrinsic bistability may not show this effect when
the area is reduced. This also agrees with the RC > L| G| criterion for oscillating behavior since
for these cases R and C are reduced, resulting in the absence of plateau-like behavior. Note that for

the values of the nonlinear R(V) used in deriving the loadlines of Fig. 7, the criteria for oscillatory

behavior in the NDR (i.e., RC > L IGl and R IGI > 1) are still satisfied.

B. Self-Oscillation Study

To investigate the effect of self-oscillations, a numerical simulation study of both the QIM and
LIM circuits was performed [25]. In these investigations, the circuit models were interrogated for
their ability to match the quantum-simulation results of Ref. [4]. Specifically, an agreement to the
overall I-V curves in Fig. 1 and an approximate amplitude/frequency match to the quasi-harmonic

self-oscillations (i.e., see Figs. 2 and 3 in Ref. [4]) is desired. Studies were performed which

utilized both a constant access resistance (i.e., R=1.63x 10_79 sz) and the nonlinear
functional R(V) as defined in Fig. 6. In these studies, linear arguments (e.g., oscillation frequency)

were employed to estimate initial values for the energy-storage elements of

L= 148x10"" Hem” and C = 23x107 F/cm®. Since all possible voltage-
dependencies present in these energy-storage elements could not be directly extracted from the

results of Ref. [4], variational studies over ranges of L and C were also performed for
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completeness. For the cases involving the QIM circuit, nonlinear inductance effects were
considered by performing calculations using a quantum-well inductor which depends on NDR

conductance. Here two different but related models were investigated. The first investigations

utilized a positive inductor model defined by L = 1/| G(V)| where T is the quasibound state

lifetime. A subsequent study employed a negative version (i.e., within the NDR region) of this

model where L = 1/ G(V). Note, this negative-L. model was previously derived by Brown et al.

[18] using a linearized impedance analysis.

In this work, a van der Pol algorithm [27] was employed to solve Eq. (8) (and various other
versions for the nonlinear-L. QIM circuit studies and LIM circuit studies) for the nonlinear phase-
space trajectories and the final current-density limit cycles were averaged to arrive at the overall I-
V characteristics. While the circuit configuration of Fig 2a appears rather simple, it should be noted
that the inclusion of nonlinear elements can lead to jumps at the turning points of the phase-space
trajectories [25]. These allowable jumps in the current-density (e.g., see Fig. 10) correspond to
instances where dv/dt is discontinuous which is a phenomena that can be explained on physical
grounds. Specifically, current jumps result when conditions conspire to allow the phase-space (i.e.,
z = dv/dt verses V) trajectory to intersect the boundary of the NDR region. At the NDR

boundary, where G — 0, consistency in Eq. (8) demands dv/dt — < ; however, since Eq. (8)

degenerates to a first-order equation a unique solution for dv/dt can be defined [25]. This jump
condition, which appeared only in simulations of the QIM circuit, requires special treatment during
the iteration steps of the numerical algorithm. Hence, this factor makes the circuit with a quantum

inductance much more difficult to solve in comparison to the model with a lead-inductance.

As noted in the previous section, neither equivalent circuit model could reproduce the physics-
based results of Ref. [4] when constant parameters (i.e., R, L and C) were employed. For example,
Fig. 5 shows the overall (i.e., time-averaged) I-V results obtained from the QIM circuit. Here, the
dc current-density component and the intrinsic I(V) characteristic are included for reference. As
shown, the oscillatory behavior introduces a large upward-shift yielding a peak in the I-V much
larger than that in Fig. 1. In addition, oscillatory behavior was observed to shift the results inside
the loadline-induced hysteresis voltage range (0.20, 0.23). Figure 9 plots the current-density phase-

space trajectories, corresponding to both the forward and backward bias sweeps, at an applied bias
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of 0.22 volts. For this case, the forward and backward limit-cycles are identical; however, they
have opposite-directed shifts which yield approximately the same overall value of current-density.
The limit-cycles of Fig. 9 exhibit rapid (but finite) changes in current-density that result from actual
z-V phase-space jumps. This point can be made clear by considering the time-domain
representation of the forward-sweep trajectory given in Fig. 10. As shown, these jumps in current-
density correspond to instances where z = dv/dt = 0. Additional variational studies revealed
that the constant-R QIM circuit was not able to reproduce the physics-based results. Specifically,
this model could not yield the correct plateau-structure or simultaneously match the amplitude and
frequency of the quasi-sinusoidal self-oscillations generated by the quantum simulations.
Similarly, the constant-R LIM circuit was found to be inadequate [25]. Here, a simultaneous match

to overall I-V and oscillation behavior could not be achieved.

A comprehensive study of the LIM circuit, which included the nonlinear R(V) element, verified
that it was unable to match either the overall I-V characteristics or the time-dependent behavior
obtained from the physics-based results. Conversely, a study of the QIM circuit configuration with
the nonlinear R(V) element yielded overall current-density results in very good agreement with the

quantum transport simulations of Fig. 1. Figure 8 displays the overall I-V results, for forward and
backward sweeps, obtained using the base circuit parameters L = 1.48x 10" "Hem® and
C= 23x10" F/cem’. Specifically, a forward sweep plateau of approximately the correct

magnitude (i.e., = 4.5 X 105 A/ sz) and extent (i.e., V = 0.23 to 0.30 volts) is present. In addition
self-oscillations were present within the forward-sweep plateau region in direct agreement with the

physical simulations. Furthermore, when the base inductor value was tuned to

L=55x10 " Hem® a very good frequency-match was achieved over the entire plateau-
region without any significant influence to the overall I-V plot in Fig. 8. For example, Fig. 11 gives

the time evolution of the current-density at two applied bias values in the plateau region. As shown,

the periods are 0.3 ps and 0.17 psat V g = 0.26 volts and 0.28 volts compared to results in Ref.

[4] of 0.4 ps and 0.133 ps, respectively. While an exact match to oscillation amplitude was not
achieved, the QIM circuit was shown to possess all the basic features present in the physics-based

results.
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It is interesting that the major influence of the nonlinear R(V) can be seen in the dc component of
the I-V characteristic alone. The presence of this dc hysteresis effect agrees with previous
experimental observations [10] which attributed such intrinsic bistability to interactions between
quantized emitter states and RT well states. In addition, the results in Fig. 8 show that the main
influence of the self-oscillations is to contribute a slight upward shift to the forward-sweep current
density. The inability of the model to amplitude-match the oscillation behavior and the absence of
a positive slope in the plateau region suggest improvements to the QIM circuit are needed. The
time-dependent characteristics of any dynamical system are strongly influenced by the charge-
storage elements. Since estimates of device capacitance, for the RTD structure under
consideration, showed a weak bias dependency within the NDR region[4] the nonlinear effects of
L will be considered in this work. As discussed earlier, the introduction of L into the equivalent

circuit was to model delay effects associated with tunneling. This tunneling delay [14] can be

related to the circuit parameters by T, = L/| G|. From physical considerations, T L should be
weakly dependent on applied bias. Therefore, the quantum inductance may be approximated by

_ L
TGV

(12)

with a nonlinear voltage-dependence that is derived from the NDR conductance. Note, the previous

expression for L(V), which predicts positive inductance values within the NDR region, is opposite

in sign to the one derived independently by Brown et al. [18] where L = 1 L/ G. The intrinsic

dependency of G(V) can be determined from the linear voltage-drop I(V) curve given in Fig. 1.
For the RTD structure under consideration, we estimate the value of T L to be 0.06 ps [14] which

is in approximate agreement with the independent tunneling calculations of Bahder, et al. [28].

Repeating the numerical circuit simulations with the L(V) defined in Eq. (12) yielded the forward-
sweep I-V characteristic shown in Fig. 12. Comparing these results to those for a constant L given
in Fig. 11 reveals the development of a completely new feature. Specifically, a horn (i.e., with
positive slope) is seen to develop within the plateau region which increases with increasing bias
until the hysteresis is quenched. This is a characteristic observed in the physics-based results given

in Fig. 1. This upward shift in average current density can be understood by comparing the
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V¢ = 0.28 volt limit-cycle of Fig. 13 to the V¢ = 0.29 volt limit-cycle of Fig. 14. For each

trajectory, the part of the cycle corresponding to positive values of transient voltage v (i.e.,

V>V ,.) is restricted more than for negative values. This is true because the nonlinear

inductance is inversely proportional to G (v, V 4.). Hence, for the positive v part of the cycle the

trajectories are impinging upon the flat part of the intrinsic I(V) characteristic where the inductance
becomes large. Thus, as the bias is increased the positive part of the v swing is inhibited more by
this large inductive effect. In turn, this reduces the negative part of the transient current density in
relation to positive component. Therefore, there is a upward shift in the overall current density for

this range of biases.

Unfortunately, unrealistically large oscillations were encountered during the backward voltage
sweep within the NDR. One possible explanation is a weak nonlinearity associated with the RTD
capacitance inside the NDR region. Evidence for such a nonlinear capacitive effect is present in
the work of Ref. [1] which suggested different C(V)’s for the forward and backward voltage
sweeps. For reference, application of Brown’s negative-inductor model lead to plateau features and
NDR region oscillations which could not be matched (i.e., by variational studies) to the physics-

based results [25].

Finally, note that the amplitude of the oscillations is expected to be roughly proportional to the

difference of the kinetic delay time, 7, , and the charge build-up time, Ty, 0or 4 = H{t g—7 L}
©(tp—-1;) where 4 is the oscillation amplitude, # is the proportionality constant, and

©(T5—7T ) is the step function. Hence, the L and C elements play a significant role in overall

dynamical behavior. Since we cannot directly extract the form of the nonlinearity for L(V) or C(V)
from the simulation results in Ref. [1], we suspect this is the origin of the unconstrained oscillations
in the backward sweep. Currently, additional work is underway to derive analytical expressions
which will offer better approximations to the nonlinear inductive and capacitive effects of the

RTD.
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IV. CONCLUSIONS

These studies have investigated the physics of hysteresis behavior and the physics of limit cycle
oscillations in RTDs. This work has combined nonlinear circuit solutions for the limit-cycle
oscillation problem with quantum-mechanical simulation results to deduce an improved circuit
description for the RTD. Here, the nonlinear coupling between a charge-accumulated access region
and the quantum well was shown to produce the plateau-like hysteresis behavior observed both
theoretically and experimentally. In addition, the RTD self-oscillations were shown to be
intrinsically tied to a quantum-inductance delay effect and, together with the hysteresis, also
depend on the nonlinear conductance in the NDR region. This work has shed light on the physical
dynamics intrinsic to tunneling structures under bias and offers an improved tool for the
optimization of RTDs embedded inside a biasing circuit. Most important, this work provides a
nonlinear equivalent-circuit approach for describing the oscillatory dynamics of RTDs and
characterizes the dependencies present in the charge-storage mechanisms within the intrinsic
device structure. These observations are very important because intrinsic-based oscillations, which
do not require the introduction of external resonating elements through contacting resistances, have

the potential of achieving operating frequencies in the THz range.
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